4 found
Order:
See also
David Anthony Lavis
King's College London
  1.  25
    The problem of equilibrium processes in thermodynamics.David A. Lavis - 2018 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 62:136-144.
    It is well-known that the invocation of `equilibrium processes' in thermodynamics is oxymoronic. However, their prevalence and utility, particularly in elementary accounts, presents a problem. We consider a way in which their role can be played by sets of sequences of processes demarcated by curves carrying the property of accessibility. We also examine the vexed question of whether equilibrium processes are necessarily reversible and the revision of this property in relation to sets of sequences of such processes.
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   9 citations  
  2. Boltzmann, Gibbs, and the concept of equilibrium.David A. Lavis - 2008 - Philosophy of Science 75 (5):682-696.
    The Boltzmann and Gibbs approaches to statistical mechanics have very different definitions of equilibrium and entropy. The problems associated with this are discussed and it is suggested that they can be resolved, to produce a version of statistical mechanics incorporating both approaches, by redefining equilibrium not as a binary property but as a continuous property measured by the Boltzmann entropy and by introducing the idea of thermodynamic-like behaviour for the Boltzmann entropy. The Kac ring model is used as an example (...)
    Direct download (13 more)  
     
    Export citation  
     
    Bookmark   19 citations  
  3.  18
    Becoming Large, Becoming Infinite: The Anatomy of Thermal Physics and Phase Transitions in Finite Systems.David A. Lavis, Reimer Kühn & Roman Frigg - 2021 - Foundations of Physics 51 (5):1-69.
    This paper presents an in-depth analysis of the anatomy of both thermodynamics and statistical mechanics, together with the relationships between their constituent parts. Based on this analysis, using the renormalization group and finite-size scaling, we give a definition of a large but finite system and argue that phase transitions are represented correctly, as incipient singularities in such systems. We describe the role of the thermodynamic limit. And we explore the implications of this picture of critical phenomena for the questions of (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  4.  32
    The question of negative temperatures in thermodynamics and statistical mechanics.David A. Lavis - 2019 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 67:26-63.
    We show that both positive and negative absolute temperatures and monotonically increasing and decreasing entropy in adiabatic processes are consistent with Carathéodory's version of the second law and we explore the modifications of the Kelvin–Planck and Clausius versions which are needed to accommodate these possibilities. We show, in part by using the equivalence of distributions and the canonical distribution, that the correct microcanonical entropy, is the surface (Boltzmann) form rather than the bulk (Gibbs) form thereby providing for the possibility of (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation